Intelligenza artificiale in sanità: introduzione all’approccio dell’AI Act per la sua regolamentazione
DOI:
https://doi.org/10.82015/NNR.2025.100109Parole chiave:
Legge sull’IA; GPAI; Approccio basato sul rischio; Codici di Condotta per l’IA e scopo generale; Sistemi di IA ad alto rischio.Abstract
Il documento affronta tematiche legate all'intelligenza artificiale per finalità generali, con un focus specifico sulle implicazioni normative, etiche e tecnologiche. Vengono analizzati i principali rischi associati all'adozione di modelli di AI generativa, inclusi aspetti di sicurezza, trasparenza e protezione dei dati. Si presta particolare attenzione al quadro regolatorio europeo, con riferimento all'AI Act e al General-purpose AI Code of practice. Il testo propone inoltre linee guida per la governance responsabile dell'IA suggerendo approcci interdisciplinari che bilancino innovazione e tutela dei diritti fondamentali. Infine, si discutono scenari futuri e strategie di mitigazione dei rischi sistemici legati agli sviluppi rapidi della tecnologia.
Riferimenti bibliografici
1. Commissione Europea (2025). Codice di condotta per i modelli di IA per finalità generali, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai.
2. Conti, F., Banchelli, M., Bessi, V., Cecchi, C., Chiti, F., Colantonio, S., D’Andrea, C., de Angelis, M., Moroni, D., Nacmias, B., Pascali, M. A., Sorbi, S., Matteini, P. (2024). Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer’s disease detection via cerebrospinal fluid analysis. Journal of the Franklin Institute, 361(18), 107249. https://doi.org/10.1016/j.jfranklin.2024.107249.
3. De Ferrari, G. M., Aldinucci, M., et al. (2021). Machine learning for predicting outcomes in patients with acute myocardial infarction. The Lancet, 397, 199.
4. Ebers, M. (2025). Truly risk-based regulation of artificial intelligence: How to implement the EU’s AI Act. European Journal of Risk Regulation, 16(2), 684–703. https://doi.org/10.1017/err.2024.78
5. Gellert, R. (2021). The role of the risk-based approach in the General Data Protection Regulation and in the European Commission’s proposed Artificial Intelligence Act: Business as usual? Journal of Ethics and Legal Technologies, 3(2), 15–33. https://doi.org/10.14658/pupj-jelt-2021-2-2.
6. Gstrein, O. J., Haleem, N., and Zwitter, A. (2024). General-purpose AI regulation and the European Union AI Act. Internet Policy Review, 13(3). https://doi.org/10.14763/2024.3.1790
7. Hacker, P., Kasirzadeh, A., and Edwards, L. (2025). AI, digital platforms and the new systemic risk. arXiv preprint. https://arxiv.org/abs/2509.17878.
8. Hao, J. , Kwapong, W. R., Shen, T., Fu, H., Xu, Y., Lu, Q., Liu, S., Zhang, J., Liu, Y., Zhao, Y., Zheng,
Y., Frangi, A. F., Zhang, S., Qi, H., and Zhao Y. (2024). Early detection of dementia through retinal imaging and trustworthy AI. npj Digital Medicine, 7, 281.
https://doi.org/10.1038/s41746-024-01292-5
9. HSR Research (2020). AI-SCORE, a project to calculate prognostic risk from Covid-19. IRCCS Ospedale San Raffaele: scientific research. https://shorturl.at/ai0gt.
10. IEO-Monzino. Converting unstructured clinical data into structured data for scientific research with Google Cloud - https://cloud.google.com/customers/ieo-monzino.
11. Istituto Mario Negri. (2022). I3LUNG: Un progetto Horizon Europe per l’implementazione di cure mediche personalizzate basate sull’intelligenza artificiale (AI) nei pazienti con tumore al
polmone.
12. Kulothungan, V. (2025). Securing the AI frontier: Urgent ethical and regulatory imperatives for AI-driven cybersecurity. arXiv preprint. https://doi.org/10.1109/BigData62323.2024.10826010.
13. Kusche, I. (2024). Possible harms of artificial intelligence and the EU AI Act: Fundamental rights and risk. Journal of Risk Research, 1–14.
https://doi.org/10.1080/13669877.2024.2350720.
14. Kwon, S. Y., and Moon, J. S. (2025). Advances in continuous glucose monitoring: Clinical applications. Medicina, 60(12), 1951. https://doi.org/10.3803/EnM.2025.2370.
15. Ledro, C., Nosella, A., and Vinelli, A. (2022). Artificial intelligence in customer relationship management: Literature review and future research directions. Journal of Business and Industrial Marketing, 37(13), 48–66. https://doi.org/10.1108/JBIM-07-2021-0332
16. Lucchi, N. (2024). ChatGPT: A case study on copyright challenges for generative artificial intelligence systems. European Journal of Risk Regulation, 15(Special Issue 3), 602–624. https://doi.org/10.1017/err.2023.59.
17. Maiorino, M. I., Signoriello, S., Maio, A., Chiodini, P., Bellastella, G., Scappaticcio, L., Longo, M., Giugliano, D. and Esposito, K. (2020). Effects of continous glucose monitoring on metrics of glycemic control in diabetes: A systematic review with meta-analysis of randomized
controlled trials. Diabetes Care, 43(5), 1146–1156. DOI: 10.2337/dc19-1459.
18. Marr, B. (2023). A short history of CHATGPT: How we got to where we are today. Forbes. https://shorturl.at/UdoqU.
19. Palmisano, A., Vignale, D., Boccia, E., Nois, A., Gnasso, C., Leone, R., Montagna, M., Nicoletti, V., Bianchi, A. G., Brusamolino, S., Dorizza, A., Moraschini, M., Veettil, R., Cereda, A., Toselli, M., Giannini, F., Loffi, M., Patelli, G., Monello, A., Iannopollo, G., Ippolito, D., Mancini, E. M., Pontone, G., Vignali, L., Scarnecchia, E., Iannacone, M., Baffoni, L., Sperandio, M., de Carlini, C.
C., Sironi, S., Rapezzi, C., Antiga, L., Jagher, V., Di Serio, C., Furlanello, C., Tacchetti, C., Esposito, A., (2022). AI-SCoRE (Artificial Intelligence – SARS-CoV-2 Risk Evaluation): a fast, objective and fully automated platform to predict the outcome in COVID-19 patients. Cardiac radiology, (127):960-972. https://doi.org/10.1007/s11547-022-01518-0.
20. Pesheva, E. (2024). Does AI Help or Hurt Human Radiologists’ Performance? It Depends on the Doctor. Harvard Medical School. https://shorturl.at/yc1V5.
21. Presno Linera, M. Á., and Meuwese, A. (2025). Regulating AI from Europe: A joint analysis of the AI Act and the Framework Convention on AI. The Theory and Practice of Legislation, 1–20. https://doi.org/10.1080/20508840.2025.2492524.
22. Rangone, N., and Megale, L. (2025). Risks without rights? The EU AI Act’s approach to AI in law and rule-making. European Journal of Risk Regulation, 1–16.
https://doi.org/10.1017/err.2025.13
23. Romano, L. and Università Federico II. (2023). L’intelligenza artificiale può interpretare le immagini TAC del pancreas, vedendo un tumore duttale che il radiologo può non riuscire a diagnosticare perché troppo piccolo. Ospedale Cardarelli Napoli - Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione Università Federico II.
24. Scalzini, S. (2025). Scientific authorship e intelligenza artificiale: Questioni e prospettive. FSE – Online First (10). https://shorturl.at/KtNVp.
25. Triguero, I., Molina, D., Poyatos, J., Del Ser, J., and Herrera, F. (2023). General purpose artificial intelligence systems (GPAIS): Properties, definition, taxonomy, open challenges and implications. arXiv preprint. https://arxiv.org/abs/2307.14283.
26. Uuk, R., Gutierrez, C. I., Guppy, D., Lauwaert, L., Kasirzadeh, A., Velasco, L., Slattery, P., and Prunkl, K. (2024). A taxonomy of systemic risks from general-purpose AI. arXiv preprint. https://doi.org/10.2139/ssrn.5030173.
27. Yang, S. A., and Zhang, A. H. (2024). Generative AI and copyright: A dynamic perspective. arXiv preprint. https://doi.org/10.2139/ssrn.4716233.
28. Zahedani, A.D., McLaughlin, T., Veluvali, A., Aghaeepour, N., Hosseinian, A., Agarwal, S., Ruan, J., Tripathi, S., Woodward, M., Hashemi, N., and Snyder, M. (2023). Digital health application integrating wearable data and behavioral patterns improves metabolic health. npj Digital Medicine, 6, 216. https://doi.org/10.1038/s41746-023-00956-y.